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PREFACE

              hat a time it is to be an evolutionary biologist! In the first edition 
of this book, we wrote that we envy the student taking a class in evolutionary biology 
today. Recent events only strengthen this sentiment. For example, since the first 
edition of the book was released, our understanding of human evolutionary history has 
been upended by findings including definitive evidence of substantial interbreeding 
between humans and other Homo species such as Neanderthals and Denisovans. Or 
to provide another example, as the final drafts of this edition were being completed, 
extensive evidence of a new hominin species, Homo naledi, was uncovered in a South 
African cave. We scrambled to tell its remarkable story before the book went to press. 
These findings, along with other major advances in our understanding of human 
evolutionary history, stimulated us to expand our coverage of human evolution from 
a short section in our first edition to an entirely new chapter in this second edition.

Evolutionary biologists continue to collaborate in new and dynamic ways with 
researchers in many disciplines and bring to such collaboration a diverse set of 
perspectives—from areas such as phylogenetics, population genetics, the study of 
adaptation, molecular genetics, and developmental biology, to name just a few. The 
result is a much deeper understanding of the history and diversity of life on Earth over 
the past 4 billion years or so. Our job as the authors of this book is to capture the exciting 
work that has gone into this effort and to present it in a rigorous and engaging fashion.

To achieve this goal, we draw on our dual roles as researchers in and teachers of 
evolutionary biology. We each run active labs abuzz with the excitement that surrounds 
the science of evolution. We both lecture about evolution to students at our own 
universities and to audiences around the world. And we are each enthusiasts about the 
history of science in general and the history of evolutionary biology in particular. The 
successful strategies we’ve developed for communicating with these diverse audiences 
have informed the tone, emphases, and features in this textbook in a way that we hope 
will excite the scientific imaginations of students and instructors alike.

We relish the fact that all science is about testing hypotheses. Hypothesis-driven 
science has proved to be the most powerful approach ever devised for understanding the 
nature of the physical world we live in. No other approach even comes close. We convey 
this through the abundant use of examples in which evolutionary biologists generate and 
test hypotheses. In this second edition, we continue the path we took in the first edition 
and include the newest work from around the globe. Through these examples, students 
will gain an intimate understanding that evolutionary biology is a continually developing 
field in which theoretical ideas translate into testable predictions and in which the 
process of hypothesis testing leads to refinements of theory. Through the lens of current 
research, students can see how the scientific understanding of evolutionary biology is 
ever changing and that built into science is a system that allows each assumption to be 
challenged and refined or even rejected based on a preponderance of evidence.

W
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We understand that it is stories, not catalogs of facts, that resonate with students (or 
anyone else). And so, in each chapter, we make use of the natural human inclination 
to acquire and process information in narrative form. Within the field of evolutionary 
biology are fascinating stories on many levels: stories of individual scientists and how 
they came to their discoveries, stories of how human thought has changed over the 
centuries, stories of how major evolutionary innovations arose in the history of life, 
stories of how individual species have changed over millennia through biological 
evolution or, as in the case of many microbes, how a population can change dramatically 
in a matter of weeks.

Science is much more than narrative, of course. As in all mature sciences, models play 
a fundamental role in evolutionary biology today. In this book, we devote considerable 
attention to simple conceptual models of evolutionary processes. Often, such models can 
be profitably expressed through the language of mathematics, and one of our principal 
aims in the text is to help students become comfortable with this approach. One of the 
most important things that students learn in college-level physics or economics classes 
is how to formulate questions about the real world in the language of mathematical 
models and how to answer these questions appropriately using mathematical analysis. 
We believe strongly that this should be a critical component of a college education in 
the biological sciences as well. At the same time, we recognize that students enter this 
course with varying degrees of mathematical preparedness, and so we have placed the 
more advanced concepts in boxes in an effort to offer instructors maximum flexibility 
in integrating mathematical models into their course.

So that students will gain a firm understanding of the essential foundations of 
evolutionary reasoning, we introduce several fundamental components of evolutionary 
thought in Chapter 1 and emphasize them throughout this textbook. These include:

• Phylogenetics. All living things on the planet today—and indeed all life that 
has ever existed—are linked by a shared evolutionary history that evolutionary 
biologists represent using phylogenetic trees. Thus, to understand evolutionary 
relationships, whether between two HIV strains or among the different domains 
of life, students must learn to think in terms of phylogenetic relationships. We 
consider it crucial that any textbook on evolution seamlessly integrates phylogenetic 
thinking throughout, and we have done so here. If students walk away remembering 
just one thing about this book—though of course we hope they walk away 
remembering much more—it will be the importance of phylogenetic thinking.

• Population thinking. Evolutionary change occurs in populations, but most 
contemporary biology curricula train students to think at the level of the 
individual, as one would in a physiology course, for example. In this book, 
we demonstrate how to think at the population level as well, paying careful 
attention to the properties of populations: population composition, variation 
among individuals within and between populations, change in the properties 
of a population over time, and so forth. This population-level perspective, 
particularly as it relates to the process of natural selection, permeates this book. 
Because we know that some students initially struggle to master this type of 
population-level thinking, we devote considerable space to teaching this skill.

• Natural selection. Evolution is often defined as “descent with modification.” As a 
population geneticist (CTB) and a behavioral evolutionary biologist (LAD), we both 
study the processes responsible for such “modification.” We convey the importance 
of this topic to students by teaching them how the process of natural selection has 
shaped the diversity of life on this planet and how other processes—most notably 
genetic drift—have also contributed to the myriad forms of life around us.
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Features
This textbook integrates the big themes in evolutionary biology—phylogenetics and 
population thinking—in a way that is both current and accessible. Extensive, in-
depth, current research examples, an emphasis on problem solving, and a stunning 
art program engage students, helping them understand fundamental concepts and 
processes. Major features include:

• Extensive coverage of phylogenetics, which is introduced in Chapter 1 
through the examination of a few engaging examples that demonstrate the 
power of phylogenetic thinking. Soon after, in Chapter 4, Phylogeny and 
Evolutionary History, and Chapter 5, Inferring Phylogeny, students are taught 
how to interpret and then build trees that generate testable hypotheses about 
evolutionary history and compare the relatedness of living organisms. This 
strong foundation in phylogenetic reasoning is then integrated into the text and 
art in virtually every chapter that follows.

• We explore fundamental concepts through the lens of phylogenetics and 
population thinking and reinforce these concepts using current research 
examples, many of which are drawn from research done in the past decade. 
From Chapter 3’s in-depth examination of Hopi Hoekstra’s work on natural 
selection, phylogeny, cryptic coloration, and the Mc1R and Agouti genes in 
oldfield mice (Peromyscus polionotus), to Chapter 11’s coverage of Jack Szostak’s 
work on lipid membranes and reproduction in the earliest cellular life forms, 
to Chapter 19’s story of how genetic evidence of 
interbreeding between humans and both Neanderthals 
and Denisovans has radically revised our understanding 
of our evolutionary history, the excitement of current 
research is captured throughout.

• Significant coverage of contemporary topics such as 
genomics, evo–devo, molecular evolution, and human 
evolution, including full chapters on the following 
subjects: Genome Evolution (Chapter 10), Evolution and 
Development (Chapter 13), Coevolution (Chapter 18), 
Human Evolution (Chapter 19), and Evolution and 
Medicine (Chapter 20).

• An in-depth focus on a few research studies in each 
chapter promotes a more complete understanding of 
how evolutionary biologists come to understand specific 
concepts. The examples were carefully chosen to offer 
a balance of classic and contemporary studies that 
most fully illustrate the concept being discussed.

• A beautiful and information-rich art program was 
carefully developed to promote understanding of key 
concepts described in the text by both engaging students 
visually and providing them with just the right amount 
of detail. The art includes distinctive figures that help 
students in the following ways:

  1.  Phylogenetic relationships are made clear through 
the many phylogenetic trees that appear in virtually 
every chapter. Many of these trees also include in-
figure captions, photographs, and line art that enrich 
students’ understanding of the concept or example.

4.4 Homology and Analogy 129

Colostethus talamancae

Allobates femoralis

Allobates zaparo

Colostethus sauli

Colostethus infraguttatus

Colostethus machalilla           

Colostethus fugax

Epipedobates tricolor

Ameerega parvulus

Phyllobates bicolor

Dendrobates leucomelas

Dendrobates tinctorius

Dendrobates reticulatus

Hyloxalus azureiventris  

FIGURE 4.24 Convergent 
 evolution in the Dendrobatidae.  
A phylogeny of the Dendroba-
tidae with aposematic clades 
shaded reveals multiple origins 
of  aposematism. Frogs in the left 
 column are cryptic and  palatable; 
frogs in the right column are 
 brightly colored and, with the 
 exception of the mimic A.  
zaparo, toxic. Adapted from Santos 
et al. (2003), nomenclature follow-
ing Grant et al. (2006).
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  2.  Research-style data graphics are presented much like they appear in the 
primary literature, but with carefully developed labels and in-figure captions 
that teach students to interpret and analyze the image or graph visually.

  3.  Diagrams of experimental processes encourage students to visualize not just 
the outcome of a research study, but the specifics of how the experiment was 
constructed so that they can better understand the meaning behind the data.

•	 Clear	and	accessible	coverage	of	quantitative methods, the most difficult of 
which are in optional boxes. This teaches students how to formulate questions 
about evolutionary processes and relationships the ways researchers do—in the 
language of quantitative models.

•	 High-quality	problem sets in the end-of-chapter material provide students with 
extensive practice in formulating and solving problems.
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FIGURE 7.13 Directional 
 selection at one locus with two 
alleles. (A) In directional selection, 
one allele A1 is favored over another, 
A2. This can occur in different ways: 
A1 can be dominant (red), A1 and 
A2 can show incomplete domi-
nance (blue), or A1 can be recessive 
(orange). (B) The trajectories of p, 
the frequency of the A1 allele, are 
illustrated from a starting value of 
p = 0.005.

Chapter 3 Natural Selection76

Fitness Consequences
While the term fitness has the everyday implication of something that is well 
matched—or fit—to its circumstances of life, the formal definition in evolutionary 
biology pertains to reproductive success. The fitness of a trait or allele is defined 
as the expected reproductive success of an individual who has that trait or allele 
relative to other members of the population. So, when we speak of fitness here, 
we are referring to the differential effect of the trait on the expected reproductive 
success of an individual relative to other individuals in its population (Fisher 
1958; Williams 1966; Clutton-Brock 1988; Reeve and Sherman 1993). In many 
instances, it will be apparent that a trait has an effect on fitness; in the case of the 
mouse P. polionotus, we will see in a moment that coat color influences survival. 
The reason is straightforward. Coat color influences the visibility of mice against 
their background. Mice that stand out against their background are more readily 
captured by predators; less visible mice are more likely to survive and reproduce.

To see the fitness effect of coat color, let us first examine a 1974 experiment by 
G. C. Kaufman in which pairs of mice, one with a dark coat and one with a light 
coat, were released into a large cage with an owl present (Kaufman 1974). For 
each environmental background—dark soil with sparse vegetation, light soil with 
sparse vegetation, and light soil with dense vegetation—Kaufman recorded the 
coat color of the mouse that the owl captured first. As can be seen in Figure 3.9, 
this experiment demonstrates a selective advantage to mice with coats that match 
the color of their background environment. Those mice are more likely to escape 
predators and thus to survive long enough to reproduce.

53.7%
32.8%

Captured

32.1% 55.1%

Captured

12.2%
23%

Captured

A B C

FIGURE 3.9 Early work on predation, coat color, and fitness in the oldfield mouse. Mice with light 
and dark coats were exposed to owl predators in three different environments: dark background with sparse 
vegetation (A), light background with sparse vegetation (B), and light background with dense vegetation 
(C). The identity of the first mouse captured in each trial was recorded. Trials lasted fifteen minutes, and if 
neither mouse was taken by the owl, the trial ended. The percentages of trials in which mice of a given coat 
color were the first to be taken by the owl are shown in each panel (percentages in a panel do not sum to 100 
because of trials in which neither mouse was taken by the predator). In all cases, owls initially captured a higher 
percentage of “color-mismatched” mice; namely, those with coat colors that failed to match their environments.
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Resources for Instructors
Downloadable Instructor’s Resources
These include content for use both in the classroom and online:

• Book art in JPEG and PowerPoint formats.

• Free, customizable Coursepacks, which are accessible directly through 
instructors’ learning management systems and include new adaptive learning 
modules on interpreting data, phylogenetic trees, and population genetics.

• Test Bank in Examview, Word RTF, and PDF formats.

• Instructor’s Manual in PDF format.

For more information and to view samples, go to wwnorton.com/instructors.

Test Bank
The Test Bank has been developed using the Norton Assessment Guidelines and 
provides a quality bank of 1000 items consisting of multiple choice and short answer/
essay questions. Each question in the Test Bank is classified by Bloom’s taxonomy, 
learning objective, section, and difficulty, making it easy to construct tests and quizzes 
that are meaningful and diagnostic.

Instructor’s Manual
This helpful online resource for instructors consists of detailed chapter outlines, guides 
to key readings in the text, and answers to the key concept questions for every chapter. 
The manual also includes brief guides to accessing and using online simulations, 
including EvoBeaker.

Coursepacks
At no cost to instructors or students, Norton Coursepacks offer a variety of review 
activities and assessment materials for instructors who use Blackboard and other 
learning management systems. With a simple download from our instructor’s website, 
an adopter can bring high-quality digital media into a new or existing online course 
(with no additional student passwords or logins required). In addition to chapter-
based quizzes with art, flashcards, and animations, the Coursepack includes three 
adaptive InQuizitive modules that develop the core foundational skills students 
need to do well in the course. The modules, on interpreting data, phylogenetic trees, 
and population genetics, were written by Christine Andrews, Senior Lecturer at the 
University of Chicago.
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Resources for Students
InQuizitive Learning Modules
InQuizitive is a formative, adaptive quizzing tool that provides a personalized learning 
experience tailored to each student’s learning needs. These free learning modules, 
accessible directly in the Coursepack, help students hone their understanding outside 
of class on three key concepts—data interpretation, phylogenetic trees, and population 
genetics—so that they come to the lectures better prepared. Each module personalizes 
the quizzing, so students get reinforced practice in the specific areas they need help 
with most. Instructors can easily review individual and overall class performance data.

Ebook
An affordable and convenient alternative to the print book, the Norton ebook retains 
the content and design of the print book and allows students to highlight and take 
notes with ease, print chapters as needed, search the text, and more.
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Giant tortoises from inside the Alcedo volcano 
on Isabela Island. This island is part of the 
Galápagos archipelago, which Darwin visited 
while aboard HMS Beagle.

PART I





3

1
An Overview of  
Evolutionary Biology

1.1 A Brief Introduction to 
Evolution, Natural Selection, 
and Phylogenetics

1.2 Empirical and Theoretical 
Approaches to the Study of 
Evolution In his classic book, The Structure of Scientific Revolutions, 

 philosopher and historian of science Thomas Kuhn argued that major 
advances in science are rare, and that true scientific revolutions involve not 
simply the accumulation of new facts and theories but fundamental changes 
in the way we think (Kuhn 1962). Once such a revolution takes place, the 
world is never seen or understood in the same way. When early astrono-
mers and physicists demonstrated that Earth was not at the center of the 
universe, what Kuhn described as a paradigm shift occurred. The very way 
we thought of Earth and our place in nature fundamentally changed. A 
similarly dramatic paradigm shift occurred when Charles Darwin laid out 
his theory of evolution.

In On the Origin of Species, published in 1859, Darwin presented two rev-
olutionary ideas. Each had been suggested independently by others before, 
but never had they been brought together with the conceptual brilliance 
and the naturalist’s eye of Charles Darwin (Chapter 2). First, after decades 
of observations, collecting data from near and far, reading incessantly, and 

◀◀ The carnivorous dusky pitcher plant 
(Nepenthes fusca) of Borneo traps insects 
in a liquid reservoir at the bottom of its 
pitcher.



Chapter 1 An Overview of Evolutionary Biology4

synthesizing and resynthesizing theories from a number of  different  disciplines, 
Darwin recognized that the diversity of life we see around us has descended from 
previously existing species, which share a common ancestor from further back in 
time. Second, Darwin realized that the often exquisite fit of species to their envi-
ronments is primarily a result of natural selection, a gradual process in which 
forms that are better suited to their environments increase in frequency in a 
population over sufficiently long periods of time. As we will see throughout this 
book, “sufficiently long” can range from a matter of days to tens of thousands of 
years, depending on the strength of natural selection and the rate of reproduction 
of the organisms we are studying. Together, these two ideas proposed by Darwin 
suggest that the entire organic world—much of everything we see, feel, smell, 
taste, and touch—is the result of evolutionary changes that have taken place 
over time.

Once the theory of evolution by natural selection was developed, scientists had 
at their disposal a natural—as opposed to a supernatural—explanation for the 
diversity of life on the planet, as well as an explanation for why the vast majority 
of life-forms that have ever existed are now extinct. More than that, they had a 
theory that could be used to explain the similarities and differences among all the 
creatures on Earth and to explain why organisms are usually so well suited to the 
environments in which they live.

Paradigm shifts have wide-ranging effects, and that was certainly the case for 
Darwin’s theory—so much so that the renowned geneticist Theodosius Dobzhan-
sky wrote, “nothing in biology makes sense except in the light of evolution” 
(Dobzhansky 1973, p. 125). Without evolutionary theory, biology is composed 
of a large number of important but disparate subdisciplines. With evolution as 
its theoretical and conceptual foundation, the biological sciences share a common 
framework that allows us to understand both the commonalities and differences 
among living forms; it allows us to make sense of the way that living things func-
tion now and to understand how they came to be.

The study of physics is fundamental to understanding our universe, because it 
allows us to reconstruct the grand story of how the universe came to be as it is, and 
it lets us understand how the universe operates today. The study of evolution is 
similarly fundamental in that it allows us to reconstruct the grand story of how all 
living things came to be and how they (and we) function.

As you will see as you work your way through this book, the characteristics 
of the organisms you are studying have been shaped by evolutionary processes. 
Whether you are interested in anatomy, physiology, behavior, molecular biology, 
genetics, development, medicine, or any other area of biology, a solid understand-
ing of evolution is indispensable.

In this chapter, we will

 • Provide a brief introduction to evolution and natural selection, including 
examples related to (1) artificial selection, (2) antibiotic resistance, (3) 
conservation biology, and (4) molecular genetics, evolution, and behavior 
in primates.

 • Give an overview of empirical and theoretical approaches to the study of 
evolution.

 • Discuss a more detailed example of the way that empirical and theoretical 
approaches interact by looking at the evolution of sex ratios.
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1.1  A Brief Introduction to Evolution, Natural 
Selection, and Phylogenetics

The science of evolutionary biology reads like a thrilling detective story in the sense 
that it unravels a great mystery. Indeed, evolutionary biologists are detectives—as 
are all scientists—but they are much more than that. The study of evolutionary biol-
ogy allows us not only to infer the relationships among all life that has ever lived and 
to track the diversity of life across vast stretches of time, but also to test hypotheses 
through a rigorous combination of observation and experimental manipulations. 
These observations and experiments may involve examining fossils or contemporary 
organisms; they may use, among other things, anatomical, physiological, hormonal, 
molecular genetic, developmental, and behavioral data; and they may involve ana-
lyzing data from DNA sequences to population composition (Figure 1.1).

At its core, evolutionary biology is the study of the origin, maintenance, and 
diversity of life on Earth over approximately the past 3.5 billion years. To under-
stand the evolution of a species fully, we need to know the ancestral species from 
which it descended, and we need to know what sort of modifications have occurred 
along the way. Darwin referred to this entire process as descent with  modification.

A D

EB

C

FIGURE 1.1 Sources of data for 
testing models of evolution. A 
few examples of the sources of data 
that evolutionary biologists use to 
test their hypotheses: (A) data from 
the fossil record, as shown by this 
fossil ammonite found in Dorset, 
England; (B) behavioral data, as 
shown by observing the behavior 
of gelada baboons in Ethiopia; (C) 
morphological data, as shown by 
this display of wing color patterns 
on Bicyclus anynana butterfly wings; 
(D) embryological data, as shown 
by the magnetic resonance imag-
ing of developing mouse embryos 
between day 9.5 and day 19, when 
the mouse is born; and (E) molecular 
genetic data, as shown by this DNA 
sequence film.
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To understand the evolution of Homo sapiens, for example, we need to understand 
the primate species from which it descended (as well as other species closely related to 
this ancestral species) and the changes that occurred over the period in which H. sapiens 
evolved. Because those earlier species are no longer present, we often have to infer their 
properties by comparing the properties of multiple living species. We use the same 
reasoning if the species in question is the malaria parasite (Plasmodium falciparum) or 
corn (Zea mays). That is, we try to discern the ancestral history of the species in ques-
tion, and, at the same time, we attempt to track the modifications that have occurred 
in that species. We aim to understand the process of descent with modification.

One of the most important processes responsible for the modifications that occur 
over time is natural selection. We will discuss natural selection and other evolution-
ary processes in greater detail in later chapters. For the time being, we can sum-
marize the process of natural selection as follows. Genetic mutations, or changes to 
the DNA sequence, arise continually and change the phenotype—the observable, 
measurable characteristics—of organisms. These mutations can increase fitness, 
decrease fitness, or have no effect on fitness, where fitness is measured in terms of 
relative survival rates and reproductive success. Many, perhaps most, mutations will 
disrupt processes that are already fine-tuned, and thus they will have harmful effects 
on fitness. By analogy, consider tinkering with a computer program. If you ran-
domly change one line of code, chances are that you will break the program entirely, 
degrade its performance or, at very best, have no effect on the program’s function. 
But some times you will get lucky—your change may actually improve the pro-
gram’s operation. Genetic mutations are similar. Most are deleterious or neutral, but 
some mutations turn out to be advantageous in the sense that the individuals who 
carry them may have more surviving offspring than average. Such genetic changes 
that improve the  fitness of individuals will tend to increase in frequency over time.

The result is evolutionary change by natural selection. The accumulation of 
advantageous genetic changes, amassed over long periods of time, can produce 
dramatic effects within a population, even to the extent of producing new species, 
genera, families, and higher taxonomic orders. Indeed, as we will see many times 
throughout the course of this book, the process of natural selection is fundamental 
in what are called the major transitions that have taken place over the past 3.5 
billion years of life on Earth—the evolution of the prokaryotic cell, the evolution 
of the eukaryotic cell, the evolution of multicellularity, and so on.

Repeatedly throughout this book, we will examine the power of natural selec-
tion in shaping the life that we see around us. We begin with some of the practical 
applications of understanding evolution via natural selection. Then we examine 
phylogenetics—how evolutionary history can be inferred using patterns of com-
mon descent—to again address an issue of practical application, in this case  policies 
in conservation biology. The examples in this section, as well as all the examples 
we discuss in this chapter, are meant to illustrate some of the major concepts, 
methods, and tools that biologists use to understand evolution.

Evolutionary Change and the Food We Eat
The next time you sit down for a meal, take a look at the items on your plate. 
Whether you’re enjoying a home-cooked supper or fast-food takeout, the food you 
are eating is almost certainly the product of evolutionary change due to intense 
selective breeding over time (Denison et al. 2003; Abbo et al. 2012; Larson et al. 
2014) (Figure 1.2). Indeed, humans have been selectively breeding grains, such 
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FIGURE 1.2 Domestication of plants and animals around the world. (A) A map showing loca-
tions where at least one plant or animal domestication event is thought to have occurred. Labels 
A–H represent geographic regions seen in panel B. (B) A chronology of when and where plants and 
animals were domesticated. Where possible, extended bars denote the period of pre-domestication 
use (blue) and the period during which domestication took place (red). Where exact domestication 
periods are unknown, narrow bars denote the latest possible date of domestication. Adapted from 
 Larson et al. (2014).
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as barley (Hordeum vulgare) and wheat (Triticum aestivum), as well as lentils (Lens 
 culinaris) and peas (Pisum sativum), for more than 10,000 years (Garrard 1999; 
Zohary and Hopf 2000; Abbo et al. 2003).

The process of human-directed selective breeding, known as artificial  selection, 
is straightforward. In the case of crops, in each generation the best plants—for 
example, those that are the hardiest, quickest growing, and best tasting—are 
 chosen as the parental stock for the next generation (Figure 1.3). If this process is 
repeated over time, the population of plants increasingly takes on these beneficial 
characteristics.

Artificial selection by humans is thus a counterpart to natural selection. 
With natural selection, traits that are associated with increased survival and 
reproduction increase in frequency. With artificial selection, humans choose 
which  individuals reproduce, and in so doing, we select traits that are in some 
way beneficial to us. Such selective breeding can produce dramatic results. For 
example, the productivity of wheat (Triticum aestivum), rice (Oryza sativa), and 
corn (Zea mays) has doubled since 1930; much of that increase is due to selec-
tion for genetic crop strains better adapted to their agricultural environments 
(Jennings and de Jesus 1968; Ortiz-Monasterio et al. 1997; Duvick and Cass-
mann 1999). And the same holds true when we look at the selective breeding 
of animals, which has resulted in increased egg production by chickens and 
increased milk production by dairy cows (Tixier-Boichard et al. 2012; Mancini  
et al. 2014).

TIMETIME

Plant seeds from the plants that
produced the largest, juiciest fruits 

Harvest
for food

Over many 
generations
yields improve
dramatically

FIGURE 1.3 The process of artificial selection. Darwin used strawberries as an example of 
 artificial selection, writing, “As soon, however, as gardeners picked out individual [strawberry] 
plants with slightly larger, earlier, or better fruit, and raised seedlings from them, and again picked 
out the best seedlings and bred from them, then, there appeared (aided by some crossing with 
 distinct species) those many admirable varieties of the strawberry which have been raised during 
the last thirty or forty years” (Darwin 1859, pp. 41–42).
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Even as artificial selection improves the quality and yield of crops and live-
stock, other evolutionary changes have detrimental effects on the human food 
supply, as we see with pesticide resistance. Although 10% to 35% of all U.S. 
crops are still lost to insect damage each year, the development of pesticides was 
a major breakthrough in reducing crop pests and thereby increasing crop produc-
tivity (Pimentel and Lehman 1991; National Research Council 2000). Natural 
selection, however, will tend to favor crop pests that are most resistant to such 
pesticides—as occurred when diamondback moths evolved resistance to one of 
the most frequently used insecticides of the late 1980s—resulting in an “arms 
race” between pest species that feed on crops and humans determined to get rid 
of such species (Ceccatti 2009; Furlong et al. 2013). As resistant pests increase 
in frequency, humans produce ever-stronger insecticides. Because evolutionary 
change occurs quickly in insects because of their short generation times, humans 
often lose this particular arms race, and therefore we continually need to develop 
new pesticides.

Why do we call the evolution of resistance to pesticides natural selection instead 
of artificial selection, given that humans are the ones producing and distributing 
the pesticides? The distinction between artificial and natural selection refers not 
to whether human activity is involved, but rather to whether humans deliberately 
choose which individuals will reproduce. In the case of increasing grain yields, 
humans actively select those varieties with higher yield; in the case of increas-
ing pesticide resistance, humans produce the pesticides but do not deliberately 
choose pesticide-resistant strains of insects for further reproduction. Indeed, what 
we want—pests easily killed by our pesticides—is just the opposite of what natu-
ral selection produces. Desirable or otherwise, evolutionary change due to human 
activity is sometimes called anthropogenic evolution (Carroll et al. 2014).

A problem similar to that of resistance to pesticides unfolds when we look at 
another product produced by humans: antibiotics.

Evolutionary Change and Pharmaceuticals
One theme that we will return to repeatedly throughout this book is the man-
ner in which research in evolutionary biology can inform our understanding of 
disease and help us to design more effective responses to the problems associated 
with disease. For example, the discovery and development of antibiotic drugs for 
preventing or treating bacterial infections was one of the major medical develop-
ments of the twentieth century. But ever since humans first began using antibiot-
ics, medical practitioners have had to deal with bacteria that are resistant to these 
drugs. The first modern antibiotic, penicillin, was introduced clinically in 1943; 
within a single year, penicillin resistance was observed, and within 5 years it had 
become common in a number of bacterial species. Since then, numerous new anti-
biotics have been developed and introduced to the market, only to lose their effec-
tiveness within a matter of years as bacteria evolved resistance to the drug (Lacey 
1973; Piddock et al. 1998; CDC 2007) (Figures 1.4 and 1.5). The evolution of 
 antibiotic resistance is the result of natural selection and can be understood only 
in the context of evolutionary biology.

Bacteria reproduce at an astounding rate—in some cases, as frequently as once 
every 20 minutes. They reach enormous population sizes—a single gram of feces 




